Este documento es propiedad de Educasound y ninguna parte del mismo puede ser reproducido o distribuido sin la autorización de los propietarios

Contacto:

info@educasound.com
Índice

<table>
<thead>
<tr>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
</tbody>
</table>

1. INTRODUCCIÓN
 1.1. Proceso de instalación de RiTA 2.1. para Mac
 1.2. Proceso de instalación de RiTA 2.1 para Windows 64 bits
 1.3. Organización

2. FUNDAMENTOS BASICOS DE AUDIO
 2.1. Relación entre el tiempo y la frecuencia
 2.1.1. La onda sinusoidal
 2.2. Velocidad de propagación del sonido
 2.3. La forma de onda
 2.4. Factor de cresta
 2.5. El decibelio
 2.6. Ley cuadrática inversa
 2.7. Refracción, difracción y reflexión
 2.8. La fase
 2.8.1. Interferencia
 2.8.2. Interferencia constructiva
 2.8.3. Interferencia destructiva
 2.8.4. Señal coherente y no coherente

3. ELANALIZADOR RiTA
 3.1 Interfaz gráfica de la función de transferencia
 3.2 Visualización de los datos de análisis
 3.2.1 Localizador de tiempo
 3.2.2 Respuesta de Magnitud
 3.2.3 Respuesta de Fase
 3.3 Cambio de Parámetros
 3.4 Procesador Digital (DSP)
 3.4.1 Activación y proceso de carga
 3.4.2 Obtención de la respuesta al impulso
 3.4.3 Sincronización
 3.4.4 Parámetros del procesador
 3.5 Comando auxiliares
 3.5.1 La Función Suma
 3.5.2 La Función Only Sum
 3.5.3 La Función Save
 3.5.4 La Función Clear
 3.5.5 La Función Track
 3.5.6 La Función Sound
 3.6 Panel de memorias

4. LA FUNCION IMPULSO
 4.1. Interfaz gráfica de la función impulso
 4.2. Opciones de visualización
4.2.1. Visualización en modo lineal... 55
4.2.2. Visualización en modo logarítmico... 56
4.2.3. Visualización en modo Energy Time Curve (ETC)........................... 57
4.2.4. Espectrograma de la función impulso... 57
4.2.5. Filtrado pasa-banda.. 58
4.3. Indicadores acústicos... 59
 4.3.1. Integral de Schroeder... 59
 4.3.2. Tiempo de reverberación... 60
 4.3.3. Early Decay Time (EDT)... 60
 4.3.4. Claridad.. 61
 4.3.5. Timbre.. 62
4.4 Importación de impulsos.. 63
4.5. Parámetros del Espectrograma.. 64

Bibliografía... 65
Lista de figuras

Fig. 1.1 Contenido de la carpeta del compilador Mac R2014b (8.4) 64 bits.......... 9
Fig. 1.2 Directorio de instalación del compilador Mac R2014b (8.4) 64 bits..... 9
Fig. 1.3 Petición de contraseña... 10
Fig. 1.4 Instalación del ejécutable.. 11
Fig. 1.5 Directorio de la instalación... 11
Fig. 1.6 Búsqueda de la instalación del compilador...................................... 12
Fig. 1.7 Comprobación de los directorios del programa.............................. 12
Fig. 1.8 Instalación.. 13
Fig. 1.9 Instalación del compilador.. 14
Fig. 1.10 Directorio de instalación del compilador.. 15
Fig. 1.11 Instalador de RiTA 2.1 Win.. 16
Fig. 1.12 Directorio de la instalación y generador de icono de escritorio......... 16
Fig. 1.13: Comprobación de la instalación del compilador........................... 17
Fig. 1.14: Comprobación de los directorios de los programas....................... 17
Fig. 2.1 Relación entre tiempo y grados.. 20
Fig. 2.2 Componentes sinusoidales de una onda cuadrada.......................... 21
Fig. 2.3 Gráfico de la rueda de fase... 27
Fig. 3.1 Interfaz de la función de transferencia.. 30
Fig. 3.2 Grafico del localizador de tiempo en modo lineal.......................... 30
Fig. 3.3 Gráfico del localizador de impulso en modo ETC........................... 31
Fig. 3.4. Gráfico del localizador de impulso en modo ETC y zoom de 1/32..... 31
Fig. 3.5 Gráfico del localizador de impulso en modo ETC y zoom vertical..... 31
Fig. 3.6 Gráfico del localizador de impulso en modo ETC y modo día........... 31
Fig. 3.7 Gráficos de la respuesta de Magnitud... 32
Fig. 3.8 Visualización de la respuesta de Magnitud con un umbral de coherencia del 80%... 32
Fig. 3.9 Visualización de la respuesta de Magnitud con un grid decimal........ 33
Fig. 3.10 Visualización de la respuesta de Magnitud con un eje de +30 dB...... 33
Fig. 3.11 Visualización de la respuesta de Magnitud en modo Stem............... 33
Fig. 3.12 Visualización de la respuesta de Magnitud en modo lineal............. 34
Fig. 3.13 Visualización del eje horizontal de la respuesta de Magnitud en modo lineal.. 34
Fig. 3.14 Visualización de la respuesta de fase.. 34
Fig. 3.15 Visualización de la respuesta de Group delay para distintos filtros Linkwitz-Riley ... 35
Fig. 3.16 Visualización de la respuesta de fase con grid MG....................... 35
Fig. 3.17 Respuesta de Magnitud y Fase suavizada a un 1/6 de Octava........ 36
Fig. 3.18 Interfaz gráfica del procesador incorporado en RiTA...................... 37
Fig. 3.19 Botones de carga y activación del DSP virtual................................ 37
Fig. 3.20 Visualización de la función de transferencia de un filtro Butterworth de 4º orden... 38
Fig. 3.21 Importación de 2 señales.. 38
Fig. 3.22 Forma de onda de un barrido exponencial y su espectrograma....... 40
Fig. 3.23 Forma de onda de un barrido exponencial inverso y su espectrograma.... 41
Fig. 3.24 Respuesta al impulso y zoom de la respuesta al impulso................. 41
Fig. 3.25 Esquema de configuración para la obtención del impulso a partir de un
barrido exponencial... 42
Fig. 3.26 Visualización de la distorsión armónica en modo logarítmico........ 42
Fig. 3.27 Exportación de la respuesta al impulso desde Smaart V7.................. 43
Fig. 3.28 Respuestas en el dominio de la frecuencia y el tiempo................ 45
Fig. 3.29 Visualización de la función de transferencia sin sincronizar.............. 46
Fig. 3.30 Visualización de la función de transferencia sincronizada. (trazo verde). 47
Fig. 3.31 Resultado del ajuste.. 48
Fig. 3.32 Parámetros de procesamiento de la medición............................... 49
Fig. 3.33 Banco de filtros del procesador... 50
Fig. 3.34 Función de transferencia de filtros Linkwitz-Riley de distintos ordenes... 51
Fig. 3.35 Función de transferencia de filtros Chebyshev I de distintos ordenes y Q... 52
Fig. 3.36 Función de transferencia de filtros APF de 2° orden y distintas Q........ 53
Fig. 3.37 Filtros paramétricos de 2° orden, con distinta Q y Gain.................. 54
Fig. 3.38 Filtros Shelving de 2° orden, con distinto Gain y Q=1/sqrt(2)............. 55
Fig. 3.39 Visualización de la suma de señales... 56
Fig. 3.40 Visualización de la respuesta Only Sum.................................... 57
Fig. 3.41 Guardado de la respuesta al impulso.. 58
Fig. 4.1 Interfaz gráfica de la función impulso... 59
Fig. 4.2 Respuesta al impulso en modo lineal de un altavoz con polaridad positiva. 60
Fig. 4.3 Respuesta al impulso en modo lineal de un altavoz con polaridad negativa. 61
Fig. 4.4 Respuesta al impulso logarítmico... 62
Fig. 4.5 Respuesta logarítmica y ETC de un altavoz de baja frecuencia.......... 63
Fig. 4.6 Respuesta de espectrograma. a) ventana Hann 128 muestras, tamaño de FFT: 2048, solapado: 90%; b) ventana Hann 4096 muestras, tamaño de FFT: 8192, solapado: 90%; .. 64
Fig. 4.7 Respuesta al impulso ETC filtrada para la octava de 125 Hz.............. 65
Fig. 4.8 Cálculo de EDT, T20 y T30 a partir de la integral de Schroeder........... 66
Fig. 4.9 Tiempo de reverberación en fracciones de octava.......................... 67
Fig. 4.10 Relación entre la energía temprana y tardía en la respuesta al impulso...... 68
Fig. 4.11 Descomposición de la claridad en tercios de octava....................... 69
Fig. 4.12 Cálculo de la ITDG a partir de la transformada de Hilbert............... 70
Fig. 4.13 Importación de la respuesta al impulso de una señal activa en el procesador... 71
Fig. 4.14 Importación de la respuesta al impulso de una sala........................ 72
Fig. 4.15 Respuesta de espectrograma. a) 0% de solapado; b) 90% de solapado. 73

Lista de tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 2.1 Relación entre la frecuencia, periodo y longitud de onda.........</td>
<td>19</td>
</tr>
<tr>
<td>Tabla 2.2 Tabla de relación en decibelios......................................</td>
<td>23</td>
</tr>
<tr>
<td>Tabla 4.1 Valores de referencia para distintos tipos de sala...............</td>
<td>63</td>
</tr>
</tbody>
</table>
1 INTRODUCCIÓN

El analizador RiTA está desarrollado en código MATLAB® y usa muchos de los conceptos aplicados en los analizadores de doble canal basados en la FFT, pero incorpora novedades con el fin de facilitar el trabajo de campo. Del mismo modo, estos cambios respecto a los analizadores convencionales permite también que sea una herramienta útil en el campo docente.

En el trabajo de campo, con las herramientas actuales, el ingeniero o técnico de sonido debe estar continuamente generando ruido rosa o algún tipo de señal de test sobre grandes y poderosos sistemas de audio para obtener los datos. De la misma manera, una vez obtenidos los datos y analizados se debe seguir generando ruido para visualizar los cambios producidos a través del procesador digital que controla al sistema. Todo esto conlleva una gran fatiga auditiva no solo para el encargado de la optimización, sino también para todo el que lo rodea.

RiTA incorpora dos sustanciales modificaciones sobre los analizadores convencionales, la obtención de la función de transferencia a partir de la respuesta al impulso, inversamente de cómo se utiliza actualmente, y la integración de un procesador digital virtual (DSP) en el analizador. Estas modificaciones producen cambios significativos en la manera de medir, buscando el objetivo final de optimizar un sistema de sonido generando el menor ruido posible.

Esta versión de RiTA aún no está preparada para obtener la respuesta al impulso por sí misma, por lo que la respuesta al impulso de un altavoz o sala debe ser obtenida de manera externa, tal y como se explica más adelante.

Si bien un ingeniero de sonido especializado en el diseño y optimización de sistemas de sonido para espectáculos está más familiarizado con la medición de sistemas electroacústicos, RiTA incorpora también la posibilidad de producir mediciones puramente acústicas.

Aunque el sonido directo y la acústica son dos campos distintos y habitualmente opuestos, cierto conocimiento de la acústica arquitectónica puede producir mejoras en los diseños de sonido. Nadie es capaz de mejorar la acústica de una sala con un altavoz, pero la información acústica es útil para adaptar el diseño de sonido a la sala y minimizar su interacción.
1.1 PROCESO DE INSTALACIÓN DE RiTA 2.1 PARA MAC

Para poder hacer funcionar RiTA es imprescindible instalar previamente el compilador Mac R2014b (8.4) 64 bits: http://es.mathworks.com/products/compiler/mcr/

En el caso de que el compilador, y solo este, ya esté instalado en el ordenador no es necesario realizar la instalación de nuevo.

Guarda el archivo del instalador de MATLAB Runtime en el ordenador en que vayas a ejecutar la aplicación o componente.

Una vez descargado, se debe ejecutar la aplicación InstallForMacOSX.app y seguir los pasos de instalación. Este proceso crea una carpeta en aplicaciones denominada MATLAB.

RiTA 2.1 funciona para Mac OSX versión 10.7 o superior.

Figura 1.1: Contenido de la carpeta del compilador Mac R2014b (8.4) 64 bits.

Figura 1.2: Directorio de instalación del compilador Mac R2014b (8.4) 64 bits.
Una vez instalado el compilador se debe descomprimir la carpeta RiTA 2.1 OSX. Dentro de esta carpeta se encuentran los siguientes archivos:

1. Guía de usuario
2. Carpeta for_redistribution:files_only
3. Carpeta for_redistribution

El proceso de instalación de RiTA puede realizarse de dos modos:

1. for_redistribution:files_only: La carpeta contiene el ejecutable RiTA 2.1 OSX. Al dar doble click se ejecuta RiTA en unos 30 s. Cada vez que se quiera abrir el analizador, simplemente se debe acceder a esta carpeta y ejecutar el programa.

Esta carpeta también contiene otras dos carpetas denominadas Acústica y Speakers. La carpeta Acústica contiene respuestas al impulso obtenidas usando un sweep exponencial de un auditorio multiuso. La carpeta Speakers contiene impulsos de altavoces de diferentes marcas.

El proceso de instalación es el siguiente:

- Una vez se ejecuta la aplicación MyAppInstaller_web, el programa busca si el ordenador tiene instalado el compilador y si es necesario alguna actualización de Java.

Figura 1.3: Petición de contraseña

- Una vez realizado este proceso, seguir las instrucciones de instalación
El programa genera una carpeta denominada Educasound en Aplicaciones donde se instala RiTA 2.1. En esta carpeta se podrán instalar las próximas versiones de RiTA.
Figura 1.6: Búsqueda de la instalación del compilador

Figura 1.7: Comprobación de los directorios de los programas

- Una vez ha finalizado el proceso de instalación, dentro de la carpeta de Educasound se encuentra la aplicación RiTA 2.1 OSX.
Figura 1.8: Aplicación instalada
1.2 PROCESO DE INSTALACIÓN DE RiTA 2.1 PARA WINDOWS 64 BITS

Para poder hacer funcionar RiTA es imprescindible instalar previamente el compilador Mac R2015a (8.5) 64 bits: http://es.mathworks.com/products/compiler/mcr/

En el caso de que este compilador, y solo este, ya esté instalado en el ordenador no es necesario volver a instalar el compilador.

Guarda el archivo del instalador de MATLAB Runtime en el ordenador en que vayas a ejecutar la aplicación o componente.

Una vez descargado, se debe ejecutar la aplicación MCR_2015ª_win64_installer.exe y seguir los pasos de instalación. RiTA 2.1 funciona para Windows 7 o cualquier versión posterior a 64 bits.

Figura 1.9: Instalación del compilador
Figura 1.10: Directorio de instalación del compilador

Una vez instalado el compilador se debe descomprimir la carpeta RiTA 2.1 Win. Dentro de esta carpeta se encuentran los siguientes archivos:

1. Guía de usuario
2. Carpeta for_redistribution:files_only
3. Carpeta for_redistribution

Para Ejecutar RiTA existen dos maneras:

1. for_redistribution:files_only: La carpeta contiene el ejecutable RiTA 2.1 Win. Al dar doble click RiTA se ejecuta en unos 30 s. Cada vez que se quiera abrir el analizador, simplemente se debe acceder a esta carpeta y ejecutar el programa. Esta carpeta también contiene otras dos carpetas denominadas Acústica y Speakers. La carpeta Acústica contiene respuestas al impulso obtenidas usando un sweep exponencial de un auditorio multiuso. La carpeta Speakers contiene impulsos de altavoces de diferentes marcas.

2. For-redistribution: La carpeta contiene un ejecutable llamado MyAppInstaller_web. Esta opción permite instalar RiTA vía internet. La aplicación busca si el compilador está instalado, en caso de que no esté instalado, instala el compilador adecuado, busca si es necesario alguna actualización de Java e instala el programa en una carpeta llamada Educasound en Program Files. También permite generar un acceso directo desde escritorio.
Figura 1.11: Instalador de RiTA 2.1 Win

Figura 1.12: Directorio de la instalación y generador de ícono en escritorio
Figura 1.13: Comprobación de la instalación del compilador

Figura 1.14: Comprobación de los directorios de los programas
2 FUNDAMENTOS BÁSICOS DE AUDIO

¿Qué es el sonido? Esta es una de las primeras preguntas que cualquier ingeniero o técnico de sonido interesado en el desarrollo de diseños y optimización de sistemas de sonido en directo debe preguntarse. Aunque el trabajo de campo necesita de otras capacidades, básicamente, el proceso de análisis y medición de un sistema de sonido se produce siempre en el dominio acústico, es decir, cuando la señal eléctrica se ha convertido en una onda de presión.

El sonido se produce como consecuencia de las vibraciones de las partículas del aire generadas por una fuente sonora. Las perturbaciones que producen las vibraciones crean ondas sonoras mecánicas longitudinales que transportan energía pero no masa. Las partículas se mueven de manera oscilante respecto de su posición de equilibrio, es decir, el sonido en el aire produce contracciones y rarefacciones de manera cíclica. Podemos describir este movimiento como un viaje de ida y vuelta a su posición de equilibrio.

Constantemente usaremos en este documento, los términos señal y sistema. Para evitar que esto pueda producir algún tipo de confusión, definimos señal como cualquier cosa que nos aporta información, y sistema como cualquier elemento que modifica la señal.

2.1 Relación entre el tiempo y la frecuencia

El movimiento que produce una fuente sonora lo podemos cuantificar y definir como:

- Frecuencia (f) como la cantidad de ciclos o viajes de ida y vuelta que produce la perturbación en un segundo, su unidad es el Hertzio¹ (Hz).

- Periodo (T) como el tiempo necesario en segundos (s) para que se complete un ciclo.

- Longitud de onda (λ) como el espacio en metros (m) necesario para que ésta se complete.

Estos tres parámetros básicos forman los pilares fundamentales para entender el análisis y la configuración de un sistema de sonido en directo.

En todo movimiento o perturbación debe transcurrir un tiempo, ¿pero cuánto? Definimos periodo (T) como el inverso de la frecuencia, por lo tanto, queda claro que el tiempo necesario para que la perturbación genere un ciclo, es decir, un movimiento de ida y vuelta a su posición de equilibrio, depende de la frecuencia. La frecuencia y la longitud de onda están relacionadas a partir de la velocidad de propagación (c), en nuestro caso, la propagación del sonido en el aire:

\[c = f \lambda \quad (m/s) \]

(2.1)

La Tabla 2.1 relaciona los tres parámetros básicos: frecuencia, periodo y longitud de onda.

¹ El Hertzio (Hz) fue adoptado por la Comisión Electrotécnica en honor de Heinrich Hertz.
<table>
<thead>
<tr>
<th>Frecuencia</th>
<th>Periodo</th>
<th>Longitud de onda</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Hz</td>
<td>50 ms</td>
<td>17.2 m</td>
</tr>
<tr>
<td>50 Hz</td>
<td>20 ms</td>
<td>6.88 m</td>
</tr>
<tr>
<td>100 Hz</td>
<td>10 ms</td>
<td>3.44 m</td>
</tr>
<tr>
<td>200 Hz</td>
<td>5 ms</td>
<td>1.72 m</td>
</tr>
<tr>
<td>500 Hz</td>
<td>2 ms</td>
<td>0.68 m</td>
</tr>
<tr>
<td>1 kHz</td>
<td>1 ms</td>
<td>0.34 m</td>
</tr>
<tr>
<td>2 kHz</td>
<td>0.5 ms</td>
<td>0.17 m</td>
</tr>
<tr>
<td>5 kHz</td>
<td>0.2 ms</td>
<td>0.07 m</td>
</tr>
<tr>
<td>10 kHz</td>
<td>0.1 ms</td>
<td>0.03 m</td>
</tr>
</tbody>
</table>

Tabla 2.1: Relación entre la frecuencia, periodo y longitud de onda

La distancia necesaria para que se complete un ciclo es también dependiente de la frecuencia, por lo tanto, en cualquier diseño de sonido que involucre múltiples fuentes sonoras, relacionamos la separación física como la cantidad de longitudes de onda que las separan. La longitud de onda depende de la velocidad de propagación.

Si definimos el rango audible en el ser humano entre 20 Hz-20 kHz podemos observar que en cualquier configuración de un sistema de sonido vamos a tener que manejar valores de tiempo o distancia completamente distintos. 1 ms puede ser un tiempo insignificante para 100 Hz o un tiempo enorme para 10 kHz. Como vemos, se trabaja en un rango de casi 10 octavas, algo que no ocurre en ningún otro campo de la física.

2.1.1 La onda sinusoidal

La onda sinusoidal es la representación más básica de una señal de audio y nos permite relacionar los anteriores parámetros presentados. Su expresión matemática es la siguiente:

\[x(t) = A \sin(\omega t + \phi) \]

Donde A es la amplitud de la señal, \(\omega \) es la frecuencia angular y \(\phi \) la fase inicial. Como podemos observar a través de la ecuación, la amplitud de la señal varía con el tiempo.

La frecuencia o velocidad angular (\(\omega \)) se define como el ángulo de giro o pulsación por unidad de tiempo, y equivale a \(2\pi \) por la frecuencia. Su unidad es el radian/segundo (rad/s). La frecuencia angular nos permite relacionar el tiempo con el ángulo, o lo que es lo mismo, expresar el tiempo en grados. Esto nos será muy útil para poder conocer a través de la respuesta de fase del analizador las diferencias de tiempo entre los distintos componentes que forman el sistema de sonido, así como su capacidad de suma.

La frecuencia angular se relaciona con la frecuencia o el periodo a partir de las siguientes expresiones:

\[\omega = 2\pi f \quad ; \quad \omega = 2\pi / T \]

Si visualizamos con detalle la Figura 2.1 podemos observar que es suficiente con conocer el periodo de la frecuencia para saber en que estado de amplitud se encuentra la
señal. Es importante darse cuenta de que a pesar que 0º y 360º significan lo mismo en términos de amplitud, no significan los mismo en términos de tiempo. Cuando una señal se encuentra a 360º ha transcurrido un tiempo, exactamente el tiempo equivalente al periodo de la frecuencia:

![Figura 2.1: Relación entre tiempo y grados.](image)

2.2 Velocidad de propagación del sonido

La velocidad del sonido se expresa aproximadamente a través de la siguiente ecuación (L. L. Beranek, 1969):

\[
c = 331.4 \sqrt{1 + \frac{\emptyset}{273}} \text{ (m/s)}
\]

(2.4)

Donde \(\emptyset\) equivale a la temperatura en grados Celsius. La velocidad de propagación depende de la temperatura, la humedad y la presión atmosférica,

Si bien el sonido puede propagarse por cualquier medio elástico, nos centramos, por razones obvias, en la propagación del sonido en el aire. La velocidad de propagación típica está alrededor de 343 m/s para una temperatura ambiente de 20º.

2.3 La forma de onda

Hemos descrito la onda sinusoidal como la forma de onda más básica. Pero el sonido es más que eso, las ondas a múltiples frecuencias se combinan para crear una señal nueva. La fase de las frecuencias individuales afectará a la forma general, pero cada frecuencia mantenerá su identidad propia. Cuando dos señales se combinan, su combinación dependerá del nivel y la fase relativa (Digón & Ferrer, 2014).
La Figura 2.2 muestra una onda cuadrada como una combinación de múltiples ondas sinusoidales de distintas frecuencias y amplitudes obtenidas a través del Desarrollo en Serie de Fourier.

Figura 2.2: Componentes sinusoidales de una onda cuadrada.

2.4 Factor de cresta

El factor de cresta de una señal se expresa como el cociente entre su amplitud máxima y su valor Root Mean Square (RMS) o valor eficaz. El valor eficaz se calcula como la raíz cuadrada de la media de los valores instantáneos al cuadrado:

\[
A_{RMS} = \left(\frac{1}{N} \sum_{i=1}^{N} A_i^2 \right)^{1/2}
\]
(2.5)

El factor de cresta de una señal tiene un valor decisivo en el cálculo de potencia de los amplificadores involucrados dentro del equipo de sonido, así como en el consumo de energía eléctrica necesaria para la alimentación del sistema.

Los factores de cresta más comunes dentro del campo del sonido directo son los siguientes:

- Onda sinusoidal estándar de la Federal Trade Commission (FTC): Barrido de ondas sinusoidales dentro de un rango de 20 Hz-20 kHz con factor de cresta de 3dB usado para las especificaciones de potencia de los amplificadores de sonido.

- Onda sinusoidal estándar de la asociación de industrias electrónicas (EIA): Onda sinusoidal a 1 kHz con factor de cresta de 3 dB usado para las especificaciones de potencia en los amplificadores de sonido. Esta señal obtiene unos valores de potencia más elevados que el estándar FTC.

- Ruido rosa (AES-2-1984): Ruido rosa modificado a un factor de cresta de 6 dB usado para la especificación de potencia de los altavoces.

- Ruido rosa: Señal de test comúnmente usada como señal de referencia en los analizadores basados en la transformada de Fourier. Su factor de cresta es de 12 dB.
2.5 El decibelio

El decibelio es una medida de potencia respecto a una potencia especificada, y muestra esta relación en una escala logarítmica. Expresar las relaciones en escala logarítmica nos permite relacionar amplios rangos de intensidades, presiones, etc., de un modo más manejable (Olson, 1940). La ecuación que define logarítmicamente una relación entre potencias es la siguiente:

\[n = 10 \log_{10} \frac{P_1}{P_2} \quad (dB) \] (2.6)

Es evidente que no únicamente relacionamos el decibelio en base a la potencia, también podemos relacionarlo en base a la presión, ganancia, voltaje o intensidad, pero no son más que manipulaciones matemáticas. En el caso del voltaje o la presión, el tipo de mediciones más usadas para la descripción de un sistema de sonido, su cálculo depende de 20 veces el logaritmo, ya que la potencia depende del cuadrado del voltaje y la intensidad del cuadrado de la presión.

\[n = 10 \log_{10} \frac{p_1}{p_2} = 10 \log_{10} \frac{p_1^2}{p_2^2} = 10 \log_{10} \left(\frac{p_1}{p_2} \right)^2 = 20 \log_{10} \frac{p_1}{p_2} \quad (dB) \] (2.7)

Como se explica anteriormente, el decibelio expresa una relación, bien contra un umbral previamente establecido o bien sobre la entrada y salida de un dispositivo. Los umbrales de referencia más usados en audio son los siguientes:

- \(\text{dB}_w \): Relaciona potencia sobre un valor de referencia de 1 Watt (W).
- \(\text{dB}_m \): Relaciona potencia sobre un valor de referencia de 1 mW.
- \(\text{dB}_v \): Relaciona voltaje sobre un valor de referencia de 1 Volt (V).
- \(\text{dB}_a \): Relaciona voltaje sobre un valor de referencia de 0.775 V.
- \(\text{dB}_{fs} \) (Full Scale): Relaciona voltaje sobre el valor numérico que puede aceptar un dispositivo digital de audio. El valor de referencia depende del nivel máximo que lleva el sistema a saturación.
- \(\text{dB}_{spl} \): Relaciona presión acústica sobre el umbral de audición humana establecido en \(2 \times 10^{-5} \) Pascales (\(Pa \)).

Teniendo en cuenta que manejamos valores relacionados con la potencia y valores relacionados con el voltaje o la presión, podemos expresar de manera logarítmica cualquier parte de la cadena de transmisión de un sistema de audio, tanto en su dominio eléctrico como acústico.
La Tabla 2.2 relaciona el ratio de ganancia para potencia y voltaje o presión a partir de su valor en decibelios.

<table>
<thead>
<tr>
<th>Potencia</th>
<th>dB</th>
<th>Voltaje/Presión</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000:1</td>
<td>40</td>
<td>100:1</td>
</tr>
<tr>
<td>100:1</td>
<td>20</td>
<td>10:1</td>
</tr>
<tr>
<td>64:1</td>
<td>18</td>
<td>8:1</td>
</tr>
<tr>
<td>16:1</td>
<td>12</td>
<td>4:1</td>
</tr>
<tr>
<td>4:1</td>
<td>6</td>
<td>2:1</td>
</tr>
<tr>
<td>2:1</td>
<td>3</td>
<td>$\sqrt{2}:1$</td>
</tr>
<tr>
<td>1:1</td>
<td>0</td>
<td>1:1</td>
</tr>
<tr>
<td>1:2</td>
<td>-3</td>
<td>1:$\sqrt{2}$</td>
</tr>
<tr>
<td>1:4</td>
<td>-6</td>
<td>1:2</td>
</tr>
<tr>
<td>1:16</td>
<td>-12</td>
<td>1:4</td>
</tr>
<tr>
<td>1:64</td>
<td>-18</td>
<td>1:8</td>
</tr>
<tr>
<td>1:100</td>
<td>-20</td>
<td>1:10</td>
</tr>
<tr>
<td>1:10000</td>
<td>-40</td>
<td>1:100</td>
</tr>
</tbody>
</table>

Tabla 2.2: tabla de relación en decibelios

2.6 Ley cuadrática inversa

La ley cuadrática relaciona matemáticamente cómo varía la presión acústica o intensidad a medida que nos alejamos de una fuente sonora. Esta ley nos indica que una fuente sonora omnidireccional radiando en campo libre tiene un decaimiento de 6 dB cada vez que se dobla la distancia, es decir, una pérdida de la mitad de la presión o cuatro veces su intensidad. Esto no es debido a ningún tipo de absorción o disipación sino del principio de conservación de la energía.

Por definición, la potencia acústica es la cantidad de potencia radiada por la fuente en una unidad de tiempo. Por el principio de conservación de la energía, la potencia acústica que emerge de una fuente debe mantenerse constante independientemente del radio por el cual se propaga (L. L. Beranek, 1969):

$$ W = I \ 4\pi r^2 $$ \hspace{1cm} (2.8)

Del mismo modo la intensidad acústica es la energía que atraviesa una área unidad en una unidad de tiempo, de este modo como la potencia de la fuente sonora se mantiene constante, la intensidad de la onda sonora decrece cuadráticamente:

$$ W_1 = W_2 \rightarrow I_1 4\pi r_1^2 = I_2 4\pi r_2^2 \rightarrow I_2 = I_1 \frac{r_1^2}{r_2^2} \hspace{1cm} (2.9) $$

Igualmente, la intensidad es directamente proporcional al cuadrado de la presión sonora:

$$ p_2^2 = p_1^2 \frac{r_1^2}{r_2^2} \rightarrow p_2 = \left(p_1^2 \frac{r_1^2}{r_2^2} \right)^{1/2} \rightarrow p_2 = p_1 \frac{r_1}{r_2} \hspace{1cm} (2.10) $$
2.7 Refracción, difracción y reflexión

La refracción se produce cuando existe un cambio de densidad en la dirección del frente de onda. La refracción produce un cambio en la dirección de propagación. Este fenómeno se muestra muy evidente en espectáculos a gran escala al aire libre, donde la dirección de propagación se ve afectada por los gradientes de temperatura. Cuando la temperatura del aire es más caliente en las capas bajas la dirección de propagación será ascendente, por el contrario cuando la temperatura en las capas más bajas es más fría que en las capas altas, la dirección de propagación será descendente.

La difracción se produce cuando el frente de onda se encuentra un obstáculo, y produce un cambio en la dirección de propagación. Las frecuencias cuyas longitudes de onda son mayores que la dimensión del obstáculo tienden a rodearlo, por el contrario las frecuencias con longitudes de onda más cortas son refejadas. Este es un fenómeno a tener en cuenta cuando se construyen grandes formaciones o arreglos de altavoces.

La reflexión se produce cuando un frente de onda se encuentra con un obstáculo y no puede traspasarlo ni rodearlo. Por la ley de Snell\(^\text{2}\) sabemos que el ángulo de la onda reflejada será igual al ángulo de la onda incidente. La cantidad de energía reflejada dependerá del coeficiente de absorción del material sobre el cual incide.

Las reflexiones son un elemento crítico en el diseño y optimización de un sistema de audio. Los diseños deben tener en cuenta este fenómeno para minimizar su efecto ya que las reflexiones tienen un efecto dramático en la inteligibilidad de la palabra cuando el sonido es reproducido por un sistema de altavoces.

Esta afirmación puede parecer extraña, conocemos que la mayoría de salas para música sinfónica, teatros, operas, usan de modo expreso las reflexiones en el escenario y en la sala para producir una mejora tonal y una mayor sonoridad. Pero en una sala preparada para un sonido acústico, el escenario, los músicos, la sala forman un todo, no existe propiamente dicho una fuente sonora, sino múltiples fuentes sonoras no correlacionadas.

Por el contrario, en un sonido amplificado, cada fuente sonora es captada de manera individual por los micrófonos antes de que esta actúe con la sala. Estas señales se combinan en la consola de mezclas y una vez combinadas se crea una señal nueva que es enviada a los distintos altavoces, estos altavoces actúan como una única fuente sonora que interactúa con el recinto acústico, de manera coherente, produciendo sumas y cancelaciones para todo el contenido de la señal.

2.8 La fase

Estrictamente hablando, se define la fase de una señal, como el estado de perturbación en que se encuentra la señal al inicio del movimiento. La ecuación para una onda plana de presión es la siguiente:

\[
p = p_0 \text{sen}(kx - \omega t + \varphi) \tag{2.11}\]

\(^{2}\) Willebrord Snel van Royen, matemático y astrónomo holandés (1580-1626)
Donde \(p_o\) es el valor máximo o amplitud máxima del cambio de presión respecto de la presión de equilibrio, \(k\) es el número de onda \(k=(2\pi/\lambda)\) y \(\varphi\) el desplazamiento de fase.

Desde el punto de vista de la optimización de sistemas de sonido, no estamos interesados en conocer la fase absoluta de la señal, los humanos no escuchamos la fase, lo que si escuchamos son las interferencias que se producen cuando las señales se combinan con una diferencia de fase, o lo que es lo mismo con una diferencia de tiempo o distancia. La perturbación resultante en cada posición del medio es una suma algebraica de las perturbaciones individuales.

Podemos conocer el desplazamiento de fase a partir del tiempo o distancia si conocemos la frecuencia (McClellan, Schafer, & Yoder, 2003):

\[
\varphi = -\omega t \\
\varphi = -\frac{2\pi}{\lambda}x
\] (2.12)

Del mismo modo podemos conocer el tiempo o la distancia a través de la fase.

\[
t = -\frac{\varphi}{\omega} \\
x = -\frac{\varphi\lambda}{2\pi}x
\] (2.13)

Cuando la pendiente de fase es negativa el tiempo es positivo e indica que la señal está retrasada, por el contrario, cuando la pendiente es positiva, el tiempo es negativo e indica que la señal está adelantada. En el proceso de ajuste de un sistema de sonido podemos prescindir del signo, visualizaremos el retraso o adelanto de la señal a través de la pendiente de la respuesta de fase.

2.8.1 Interferencia

Como hemos comentado anteriormente, la perturbación resultante de la combinación de dos ondas coherentes de la misma frecuencia es su suma algebraica. De este modo, el resultado de la interferencia se reduce a un cálculo trigonométrico:

\[
sin\alpha + sin\beta = 2cos\left(\frac{\alpha - \beta}{2}\right)sin\left(\frac{\alpha + \beta}{2}\right)
\] (2.14)

La suma de dos señales de idéntica amplitud, frecuencia y distancia dependerá de la diferencia de fase con la que se encuentren.

\[
p = 2A\left[cos\left(\frac{k_1-k_2}{2}x - \frac{\omega t_1 - \omega t_2}{2} + \frac{\varphi_1 - \varphi_2}{2}\right)sin\left(\frac{k_1+k_2}{2}x - \frac{\omega t_1 + \omega t_2}{2} + \frac{\varphi_1 + \varphi_2}{2}\right)\right]
\]

Como las frecuencias son idénticas y por lo tanto sus números de onda también, la ecuación se reduce a:
El resultado de la interferencia, no es más que una nueva onda de la misma frecuencia cuya amplitud depende de la diferencia de fase. También se puede observar que esta nueva señal tiene una nueva fase que es la semisuma de las fases originales.

Un diseño de sonido necesita de múltiples altavoces dispuestos en diferentes localizaciones para cubrir las necesidades de presión y cobertura en la audiencia, por lo tanto, esto implica que las diferentes fuentes sonoras llegan a los oyentes con una diferencia de distancia o lo que es lo mismo, con una diferencia de fase.

Asumimos que todos los altavoces radian con la misma fase, aunque como veremos más adelante esto no es siempre así. A partir de la anterior expresión podemos conocer la amplitud de la interferencia cuando existe una diferencia de distancia:

\[
p = 2A \cos \left(\frac{\Delta \phi}{2} \right) \sin \left(kx - \omega t + \frac{\phi_1 + \phi_2}{2} \right)
\]

(2.16)

La Figura 2.3 muestra una representación de la rueda de fase, que permite de manera cómoda visualizar y conocer cómo será la combinación de dos señales coherentes cuando se combinan con una diferencia de fase y el mismo nivel. Cuando dos señales idénticas se combinan con el mismo nivel su suma puede ser cualquier valor comprendido entre +6 dB y -∞.

En los textos académicos es común expresar la fase en radianes (rad) mientras que en el ámbito profesional ésta es expresada en grados, esto es debido a que la mayoría de analizadores profesionales representan de este modo la respuesta de fase. Es por eso, que durante este documento se alternará su uso.

Hasta ahora hemos mostrado el resultado de la interferencia cuando ambas señales se combinan con la misma amplitud, pero esto no es lo habitual. En un sistema de sonido real, el sonido que recibe la audiencia es una combinación de múltiples señales con diferencias de nivel y fase. El cálculo trigonométrico se vuelve menos sencillo en este caso, por lo tanto, usaremos el cálculo fasorial. Si descomponemos las señales en sus fasores, la amplitud de la interferencia se reducirá al módulo del número complejo:

\[
p = \sqrt{(A_1 e^{j\phi_1} + A_2 e^{j\phi_2})^2} = \sqrt{A_1^2 + A_2^2 + A_1A_2(e^{j\Delta\phi} + e^{-j\Delta\phi})}
\]

(2.18)

Aplicando la identidad de Euler obtenemos:

\[
p = \sqrt{A_1^2 + A_2^2 + 2A_1A_2 \cos (\Delta \phi)}
\]

(2.19)

Y la fase resultante de la combinación como:

\[
\phi' = \tan^{-1}\frac{A_1 \sin \phi_1 + A_2 \sin \phi_2}{A_1 \cos \phi_1 + A_2 \cos \phi_2}
\]

(2.20)
2.8.2 Interferencia constructiva

La amplitud de una combinación de diferentes señales solamente puede ser máxima si estas se combinan con una diferencia de fase de $2\pi n$, donde n es un número entero:

$$\cos \left(\frac{\Delta \phi}{2} \right) = \pm 1 \rightarrow \left(\frac{\Delta \phi}{2} \right) = n\pi \rightarrow \Delta \varphi = 2\pi n ; n = 0,1,\ldots$$ \hspace{1cm} (2.21)

Del mismo modo, únicamente podemos conseguir la máxima relación de suma si ambas señales tienen un desplazamiento físico de un múltiplo entero de su longitud de onda:

$$\cos \left(\frac{\pi \Delta x}{\lambda} \right) = \pm 1 \rightarrow \left(\frac{\pi \Delta x}{\lambda} \right) = n\pi \rightarrow \Delta x = n\lambda ; n = 0,1,\ldots$$ \hspace{1cm} (2.22)

En este ejemplo hemos comprobado los valores para los que se obtiene la máxima suma, pero es imposible crear una configuración de un sistema de sonido donde toda la audiencia esté dentro de los parámetros óptimos. Definimos como zona de interferencia constructiva aquellos lugares donde la diferencia de fase se encuentra entre 0 y 120 grados, es decir, las zonas que tienen una relación de suma de entre +6 y 0 dB.

Hasta ahora hemos supuesto que todas las señales radian con la misma polaridad, pero esto no se puede presuponer, en muchos casos los altavoces no tendrán la misma polaridad, o incluso deberemos introducir cambios en la polaridad desde la consola de mezclas o procesador digital para realizar un ajuste correcto. Recordemos que invertir la
polaridad implica desplazar π radianes la fase para todas las frecuencias. Por lo tanto, también se consigue la máxima suma cuando ambas señales tienen una diferencia de fase de un múltiplo entero impar de π más una inversión de polaridad.

$$\cos \left(\frac{\Delta \varphi + \pi}{2} \right) = \pm 1 \rightarrow \frac{\Delta \varphi + \pi}{2} = n\pi \rightarrow \Delta \varphi = \pi(2n - 1) ; n = 0, 1, \ldots \quad (2.23)$$

2.8.3 Interferencia destructiva

La interferencia destructiva máxima se produce cuando las señales al combinarse crean una cancelación máxima. Esto ocurrirá siempre que exista una diferencia de fase equivalente a un múltiplo impar de π:

$$\cos \left(\frac{\Delta \varphi}{2} \right) = 0 \rightarrow \frac{\Delta \varphi}{2} = (2n + 1) \frac{\pi}{2} \rightarrow \Delta \varphi = \pi(2n + 1) ; n = 0, 1, \ldots \quad (2.24)$$

O una separación física equivalente a media longitud de onda o un múltiplo impar:

$$\cos \left(\frac{\pi \Delta x}{\lambda} \right) = 0 \rightarrow \frac{\pi \Delta x}{\lambda} = (2n + 1) \frac{\pi}{2} \rightarrow \Delta x = (2n + 1) \frac{\lambda}{2} ; n = 0, 1, \ldots \quad (2.25)$$

Del mismo modo que en el caso anterior, también se puede producir una cancelación máxima cuando ambas señales se combinan correctamente pero invertidas de polaridad.

$$\cos \left(\frac{\Delta \varphi + \pi}{2} \right) = 0 \rightarrow \frac{\Delta \varphi + \pi}{2} = (2n + 1) \frac{\pi}{2} \rightarrow \Delta \varphi = 2\pi n ; n = 0, 1, \ldots \quad (2.26)$$

Como se puede visualizar en el gráfico de la rueda de fase, siempre que las señales se combinen una diferencia de fase de entre 120º a 240º producirán una cancelación, es decir la suma de ambas señales será menor que el valor de una única señal.

2.8.4 Señal coherente y no coherente

Definimos que dos señales son coherentes si la diferencia de fase entre ellas se mantiene constante a través del tiempo. En este caso la relación de suma depende de la relación de fase entre ellas.

Por el contrario, dos señales son no coherentes si su relación de fase no es constante sino que varía aleatoriamente. En este caso su valor de suma no depende de la fase.
3 EL ANALIZADOR RITA

La idea que reside detrás del analizador es muy simple. Conocemos que, si excitamos con un impulso un sistema lineal e invariante el tiempo, a su salida obtenemos su respuesta al impulso \(h(n) \). Para simplificar, podemos asumir que un altavoz o un recinto acústico es lineal, siempre y cuando su funcionamiento este dentro de unos límites normales.

El teorema de la convolución nos dice que si conocemos la respuesta al impulso de un sistema podemos conocer su salida como la convolución entre la señal de entrada y su respuesta al impulso.

\[
y(n) = x(n) * h(n)
\]

(3.1)

Del mismo modo, conocemos que una convolución en el dominio temporal es equivalente a una multiplicación en el dominio de la frecuencia, por lo tanto, aplicando la FFT obtenemos la respuesta a la salida del sistema como:

\[
Y(\omega) = X(\omega) H(\omega)
\]

(3.2)

La función de transferencia se reduce a obtener el cociente entre la salida del sistema y la señal de entrada:

\[
H(\omega) = \frac{Y(\omega)}{X(\omega)}
\]

(3.3)

Mientras la respuesta espectral media valores absolutos, la función de transferencia media valores relativos, magnitud y fase relativa.

Del mismo modo, la respuesta al impulso de una sala determina su comportamiento. Una vez obtenida la respuesta impulsional y calculada la integral de Schroeder se pueden obtener multitud de indicadores acústicos.

3.1 Interfaz gráfica de la función de transferencia

Las interfaces desarrolladas con la GUI (Graphics User Interface) de MATLAB® concentran en la misma pantalla toda la información relevante para el proceso de análisis, minimizando el proceso cognitivo y usando el color y el tamaño de los objetos para generar pop-out\(^3\) y facilitar la estrategia de búsqueda.

\(^3\) Pop-out: Efecto que se produce cuando un estimulo visual difiere de objetos similares.
3.2 Visualización de los datos del análisis

Los datos de análisis son descompuestos en tres gráficos diferenciados:

1. Localizador de tiempo
2. Respuesta de Magnitud
3. Respuesta de Fase

3.2.1 Localizador de tiempo

El localizador de tiempo abre en modo lineal y permite conocer la diferencia de tiempo entre las distintas señales bajo análisis. Como se verá más adelante, los tiempos son pasados automáticamente a cada canal del procesador.

- Modificación del tipo de visualización:

Permite variar la respuesta entre Lineal, Logarítmico y ETC
3.2.2 Respuesta de Magnitud

La magnitud, que se obtiene como el módulo del número complejo, nos aporta dos informaciones importantes, el nivel y la frecuencia relativa. Una medición de doble canal media sobre datos relativos. Podemos pensar en la función de transferencia como en una comparación, es decir, la comparación entre la señal de referencia y la señal de medición.
La coherencia es una estimación estadística que nos permite conocer la linealidad y causalidad entre la señal de medición y referencia en una función de transferencia. La coherencia es un indicador de la fiabilidad de la medición. Su valor oscila entre 0 y 1, por lo que es común mostrar la respuesta de coherencia en porcentajes. 0% indica que la señal de medición no está correlacionada sobre la señal de referencia, mientras que una coherencia del 100% indica que las señales están perfectamente correlacionadas.

La coherencia se ve afectada por 2 tipos de inferencias: causales y no causales.

- **Causal**: La fuente de interferencia está correlacionada con la medición. Efectos como las primeras reflexiones o la reverberación producen una pérdida de inteligibilidad en el sistema, la coherencia es un buen indicativo para detectarlas. La coherencia es muy sensible a los desajustes temporales, es decir a la falta de sincronización.

- **No causal**: Cuando la fuente de interferencia no está correlacionada con la medición. Fenómenos como el ruido y el viento afectan a la medición y por lo tanto, a la coherencia.

En una medición no se tiene control sobre las fuentes de ruido no correlacionadas que generan una pérdida en la fiabilidad de la medición, pero el trazo de coherencia es un gran aliado para detectar las interferencias correlacionadas, es decir, aquellas que son producidas por el sistema. Una medición de la respuesta en frecuencia del sistema debe ir siempre acompañada de la visualización del trazo de coherencia, la combinación de...
ambas respuestas nos aportan la información necesaria para proponer las posibles correcciones.

- **Grid de pantalla:** Permite modificar el grid de la pantalla para la visualización de los datos entre Octava, 1/3 de Octava y en modo decimal.

![Figura 3.9: Visualización de la respuesta de Magnitud con un grid decimal.](image)

- **Opción de Ejes:** Permite cambiar los ejes verticales de la respuesta de magnitud

![Figura 3.10: Visualización de la respuesta de Magnitud con un eje de +-30 dB](image)

- **Opción Stem:** permite visualizar el gráfico de magnitud y fase exactamente con los datos que está tomando el analizador.

![Figura 3.11: Visualización de la respuesta de Magnitud en modo Stem.](image)

- **Visualización Lineal / Logarítmica de la respuesta de magnitud (Esquina izquierda):** Permite visualizar los datos en modo logarítmico como 20 veces el logaritmo en base 10 del valor absoluto de la función de transferencia o en modo lineal.
Figura 3.12: Visualización de la respuesta de Magnitud en modo lineal.

- Visualización Lineal / Logarítmica del eje horizontal:

Figura 3.13: Visualización del eje horizontal de la respuesta de Magnitud en modo lineal.

- Zoom Horizontal por bandas de frecuencia:

 o All: Visualiza todo el rango de frecuencias completo.
 o LF: Visualiza la banda de 20-200 Hz
 o MF: Visualiza la banda de 200-2kHz
 o HF: Visualiza la banda de 2-20 kHz

3.2.3 Respuesta de Fase

La respuesta de fase en un analizador de doble canal es posiblemente la respuesta más importante y de la que se puede obtener la mayor información para la optimización de un sistema de sonido. La respuesta de fase nos va a proporcionar la información del tiempo relativo.

Figura 3.14: Visualización de la respuesta de fase

- Opciones de visualización: Por defecto el analizador abre por defecto en el modo de visualización clásico con los ejes entre +-180°
○ Fase desplegada entre 0º y 360º: Útil para confirmar datos cuando las roturas o giros de fase coinciden en las zonas de 180º o -180º.

○ Phase delay: El delay de fase muestra la distorsión de fase en segundos, es decir, básicamente convierte el resultado obtenido en grados a tiempo:

\[P(\omega) = -\frac{\varphi(\omega)}{\omega}; \quad \omega = 2\pi f \] \hspace{1cm} (3.4)

○ Group delay: se define como la derivada de la fase respecto de la frecuencia y mide la rapidez o velocidad de cambio de la respuesta de fase:

\[G(\omega) = \frac{d}{d\omega} \varphi(\omega); \quad \omega = 2\pi f \] \hspace{1cm} (3.5)

Figura 3.15: Visualización de la respuesta de Group delay para distintos filtros Linkwitz-Riley

- Grid de pantalla: Permite modificar el grid de la pantalla para la visualización de los datos entre 30º, 45º o modo MG

Figura 3.16: Visualización de la respuesta de la respuesta de fase con grid MG (Magú)
3.3 Cambio de parámetros

- **Sampling Rate**: Antes del inicio de cualquier medición se debe elegir la frecuencia de muestreo a la que se quiere trabajar. Como se ha comentado anteriormente, RiTA obtiene la respuesta al impulso desde algún dispositivo externo, por lo tanto, se debe elegir la frecuencia en la que se han obtenido los impulso.

- **FFT size**: Permite elegir entre diferentes tamaños de FFT, desde 2^7 a 2^{15}. Trabajar con un tamaño fijo es óptimo para mediciones eléctricas. Para mediciones acústicas es recomendable usar 64 FPPO que mide 64 puntos por octava desde 187.5 Hz.

En el caso que se use un tamaño fijo de FFT y la señal bajo medición tenga un delay mayor que la constante de tiempo, el analizador automáticamente selecciona 32768 puntos.

- **Smooth**: Suavizado de la respuesta. RiTA utiliza un filtro de Savitzky-Golay (Orfanidis, 2010). El filtro de Savitzky-Golay también conocido como filtro de suavizado polinomial, es una generalización de un filtro FIR de suavizado. Su virtud radica en que preserva mejor el contenido de alta frecuencia a cambio de una menor eliminación de ruido.

Figura 3.16: Respuesta de Magnitud y Fase suavizada a un 1/6 de Octava
3.4 Procesador digital (DSP)

El procesador digital es la herramienta clave en cualquier configuración de un sistema de sonido actual. En un procesador profesional podemos diferenciar dos partes, una parte que se encarga del control del altavoz, es decir, implementa los parámetros que desarrolla el fabricante para su correcto funcionamiento, como la ecualización de vía, los filtros del crossover espectral, compresión-limitación, ganancia, etc. Y una parte que se encarga de la adaptación del altavoz a un entorno, estos son los parámetros que incorpora RiTA en su DSP virtual. La Figura 3.17 muestra la interfaz gráfica del procesador.

Figura 3.17: Interfaz gráfica del procesador incorporado en RiTA

La implementación del procesador en el analizador es la segunda gran novedad de RiTA respecto a los analizadores convencionales. Como se ha comentado anteriormente, un analizador únicamente nos aporta información, las rectificaciones en el sistema deben ser producidas en el procesador digital. Incorporar el procesador en el analizador permite poder manipular la señal, una vez ésta ha sido obtenida a través del impulso, y visualizar el resultado de las modificaciones sin la necesidad de estar generando ruido rosa constantemente.

3.4.1 Activación y proceso de carga

Cada medición tiene asignada automáticamente un canal de proceso y este canal de proceso se corresponde al dispositivo que estamos midiendo. Es decir, una vez obtenida la función de transferencia podemos visualizar todos los cambios que se produzcan en el DSP.

- Botón Plot: Activa la visualización por pantalla de la función de transferencia. En el caso que no se haya importado ninguna respuesta al impulso por el canal de proceso fluye un ruido rosa internamente. Está función permite visualizar la función de transferencia eléctrica de los parámetros del procesador.

Cuando se ha importado una respuesta al impulso, el botón plot activa la función de transferencia y se visualizan los datos por pantalla. En el caso que existan varias mediciones en la pantalla de visualización, al activar plot la respuesta de Magnitud, Fase y estimación de la coherencia se grafican en primer plano.
Figura 3.19: Visualización de la función de transferencia de un filtro Butterworth de 4º orden

- Botón Import: El botón de importación permite importar respuestas al impulso en formato .wav o .csv. Una vez realizada la importación, pulsando “plot” se activa la visualización de la función de transferencia.

En el caso que se quiera reutilizar el canal de proceso para la importación de un impulso nuevo, simplemente se sigue el mismo procedimiento. La señal antigua se borra y “plot” activa la nueva señal. Es importante desincronizar primero antes de importar una nueva señal.

Figura 3.20: Importación de 2 señales
Una vez se importan las respuestas al impulso y se visualiza la función de transferencia, el localizador de tiempo muestra las respuestas al impulso y cada canal de proceso muestra la diferencia temporal entre las señales.

La función Import está pensada para importar respuestas de altavoces, se pueden encontrar respuestas al impulso en la carpeta “Speakers”, por lo que independientemente del tamaño del impulso, RiTA obtiene un tamaño de 32768 muestras por defecto, bien truncando o aplicando zero-padding. Una vez importada la respuesta, el tamaño de FFT se puede modificar a través del desplegable de la opción FFT size.

3.4.2 Obtención de la respuesta al impulso

Como se ha comentado anteriormente, esta versión aún no permite obtener la respuesta al impulso y por lo tanto la función de transferencia de manera propia. Necesita ser generada de manera externa.

Existe varias maneras de obtener la respuesta al impulso, estas son algunas de ellas, siendo el nuestro punto de vista, y la que se implementará en la próxima versión la técnica del barrido exponencial.

Técnica del barrido exponencial:

En comparación con el uso de señales pseudo-aleatorias, obtener la respuesta al impulso usando barridos sinusoidales como la señal de excitación produce una mayor inmunidad contra la distorsión y el ruido. Si bien esta característica produce una gran mejora para la obtención de indicadores acústicos, el método es también útil para la medición de altavoces o cualquier elemento de la cadena de transmisión de un sistema de audio (Farina, 2000).

Un barrido sinusoidal que varía en el tiempo puede ser descrito como \(s(t) = sin[f(t)] \), donde la frecuencia instantánea es la derivada respecto del tiempo de \(f(t) \). Los barridos más comunes son el barrido lineal y el exponencial, muchas veces llamado logarítmico. En ambos casos, la frecuencia es una función creciente en el tiempo. Por lo tanto, para un barrido lineal su frecuencia instantánea será:

\[
\frac{df(t)}{dt} = \omega_1 + \frac{\omega_2 - \omega_1}{T} t
\]
(3.6)

Donde \(\omega_1 \) y \(\omega_2 \) son la frecuencia máxima y mínima en rad/s del barrido y \(T \) la duración. Integrando obtenemos:

\[
f(t) = \omega_1 t + \frac{\omega_2 - \omega_1}{2T} t^2
\]
(3.7)

Obtenemos la ecuación que define al barrido lineal como (Farina, 2000):

\[
s(t) = sin \left(\omega_1 t + \frac{\omega_2 - \omega_1}{2T} t^2 \right)
\]
(3.8)
El barrido exponencial es una señal que contiene la misma energía para cada ancho de banda constante. Siguiendo con el mismo razonamiento, podemos escribir la ecuación que define el barrido exponencial como:

\[s(t) = \frac{T \omega_1}{\ln \frac{\omega_2}{\omega_1}} (e^{(t/T)\ln(\omega_2/\omega_1)} - 1) \]

(4.5)

El barrido exponencial tiene energía constante para cada ancho de banda logarítmico y la frecuencia varía exponencialmente a través del tiempo desde la mínima hasta la máxima frecuencia que se quiera reproducir.

La Figura 3.21 muestra la forma de onda de un barrido exponencial y su representación del espectrograma, donde claramente se observa el comportamiento exponencial a través del tiempo de la señal.

Una propiedad del barrido exponencial es que tiene inversa, la función inversa se obtiene substituyendo \(t \) por \(-t\) y modulando la amplitud para obtener un decaimiento logarítmico de 3 dB por octava:

\[i(t) = 10^{-\frac{3}{(10)\log_2(e^{-(t/T)\ln(\omega_2/\omega_1)})}} \sin \left(\frac{T \omega_1}{\ln \frac{\omega_2}{\omega_1}} (e^{-(t/T)\ln(\omega_2/\omega_1)} - 1) \right) \]

(3.8)
La convolución entre el barrido exponencial y su función inversa devuelve una respuesta al impulso, como se muestra en la Figura 3.23. Por el efecto de la convolución, el impulso se desplaza la cantidad de muestras equivalentes a la duración del barrido.

El método para obtener la respuesta de un altavoz o una sala, es excitar el sistema con el barrido exponencial y obtener la respuesta mediante un micrófono de medición omnidireccional. El impulso se obtiene convolucionando el resultado obtenido con el inverso del barrido generado. Cabe recordar, que una convolución en el dominio temporal equivale a una multiplicación en el dominio de la frecuencia, mucho más eficaz algorítmicamente. El método de medición es mostrado en la Figura 3.25.

De la misma manera que para la obtención de la respuesta al impulso usando la IFFT, cada vez que se dobla la duración del barrido la relación señal-ruido mejora 3dB.
Figura 3.25: Esquema de configuración para la obtención del impulso a partir de un barrido exponencial.

El tamaño de la señal utilizada como señal de excitación depende de la información que queramos conocer. Si nuestro interés se centra en conocer la respuesta en frecuencia de un altavoz y su distorsión de fase, una medición cercana y con un tamaño corto de barrido es suficiente. Por el contrario, si nuestro interés se centra en obtener la respuesta al impulso de una sala para obtener los indicadores acústicos, la medición debería realizarse con un altavoz omnidireccional y con un tamaño de barrido mayor.

Otra propiedad interesante de este método es que las distorsiones no lineales presentes en la medición son obtenidas antes de la llegada del impulso, como se puede apreciar en la Figura 3.26. Esto permite con el uso de una ventana temporal adecuada, adquirir únicamente la respuesta lineal y mantener a salvo la respuesta al impulso de la posible distorsión armónica (Farina, 2010).

Este procedimiento se puede realizar de manera sencilla usando el Plug-in Aurora en Adobe audition o Audacity.

La Transformada inversa de Fourier

Como ya podemos suponer, ésta es la técnica utilizada por los analizadores basados en la FFT. La respuesta en frecuencia obtenida a partir de la función de transferencia y la respuesta al impulso contienen la misma información pero en dominios distintos. Por lo tanto, en este tipo de técnica, se obtiene el impulso del sistema indirectamente como la IFFT de la función de transferencia.

\[h[n] = \mathcal{F}^{-1}\{H(\omega)\} \quad (3.9) \]
Cuando se usa una señal de test aleatoria o pseudo-aleatoria se introduce un cierto grado de ruido para obtener la IFFT. La solución es, como siempre, promediar sobre varias mediciones consecutivas. Cada vez que se dobla el número de promedios la relación señal-ruido mejora 3dB.

Desde el software de análisis Smaart V7 de la compañía Rational Acoustics: http://www.rationalacoustics.com/ se puede de manera sencilla obtener una respuesta al impulso en modo .wav e importar a RiTA.

El proceso es el siguiente: Una vez obtenida la respuesta al impulso del sistema bajo medición, la opción “save impulse response”, permite exportar un archivo .wav que posteriormente puede ser importado en RiTA y visualizar todos los cambios producidos por el procesador. Es recomendable, si el interés es obtener la respuesta de un altavoz, usar un tamaño de 32768.

Figura 3.27: Exportación de la respuesta al impulso desde Smaart V7

Importar un archivo .wav desde Pure Data

Pure Data es un software Open-source para manipulación de audio en tiempo real: https://puredata.info/

ExpoChirpToolox: Es una implementación de Pure Data desarrollada por Bassik & Katjav que permite obtener la respuesta al impulso a tiempo real y exportar un archivo .Wav.

ExpoCirp implementa la técnica del barrido exponencial, desarrollada por Angelo Farina, tal y como se explica en el apartado sobre el barrido exponencial.

La información y descarga del producto puede encontrarse aquí: http://www.katjaas.nl/expochirp/expochirp.html
Importar un archivo .csv

Hay que tener en cuenta que la respuesta al impulso que exporta Mapp XT viene normalizada, por lo que se pierde la información de magnitud en la función de transferencia, mostrando un exceso de energía para las mediciones de altavoces de baja frecuencias o mediciones fuera de eje.

3.4.3 Sincronización

La sincronización es un elemento clave. En una medición, la diferencia temporal (delay) de la transmisión acústica debe ser conocida. Ambas señales deben tener el mismo tiempo de retraso para asegurar que la misma parte de la excitación está presente en ambos canales (Müller & Massarani, 2001).

Aunque cuando el tiempo de retraso es relativamente pequeño es posible localizar la diferencia temporal a través de la visualización de la respuesta de fase, también podemos localizar la diferencia temporal a partir de la respuesta al impulso. Una vez se ha obtenido la función de transferencia, se obtiene la respuesta al impulso aplicando la transformada inversa de Fourier, en nuestro caso la transformada rápida (IFFT) como:

\[
x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j2\pi kn/N}
\]

(3.10)

Una gran propiedad de la transformada de Fourier es que es invertible, es decir, que podemos reconvertir la señal en el dominio temporal a partir de su respuesta espectral. Del mismo modo, si aplicamos la IFFT a una función de transferencia obtenemos la respuesta al impulso del sistema. La función de transferencia y la respuesta al impulso contienen la misma información, pero en diferentes dominios, en frecuencia y en el tiempo y siempre es posible pasar de un dominio a otro a partir de sus ecuaciones correspondientes (Figura 3.28).

Una vez se ha obtenido la respuesta al impulso, se calcula la diferencia de tiempo localizando la muestra con mayor amplitud, que normalmente suele coincidir con la llegada del sonido directo, o bien usando la correlación cruzada.

La importancia de la sincronización no es únicamente la capacidad de igualar los tiempos de la señal de medición y referencia para el análisis, su mayor virtud, es que nos permite crear una posición ancla, es decir, un tiempo desde donde poder visualizar las diferencias relativas entre diferentes señales.
Figura 3.28: Respuestas en el dominio de la frecuencia y el tiempo.

Una vez las señales han sido cargadas en el procesador, el botón de sincronización, sincroniza todas las señales sobre el canal seleccionado. Esto permite visualizar las diferencias relativas entre todas las mediciones.

Figura 3.29: Visualización de la función de transferencia sin sincronizar

Figura 3.30: Visualización de la función de transferencia sincronizada. (trazo verde)
Como se puede apreciar en la figura 3.30, una vez sincronizados es fácil apreciar que tanto el altavoz de subgrave como el altavoz de trazo verde están adelantados respecto el punto de sincronización. Esto permite a través del procesador virtual realizar los ajustes necesarios (Figura 3.31).

Figura 3.31: Resultado del ajuste

Es IMPORTANTE desincronizarse si durante el proceso de ajuste se quiere importar una nueva señal. RiTA manipula y procesa toda la información instantáneamente y si se importa una nueva señal con un canal de proceso sincronizado, esta nueva señal suma el tiempo de retardo de la señal sincronizada, produciendo errores en la lectura de datos.

3.4.4 Parámetros del procesador

El procesador virtual incorpora los filtros IIR y FIR más comunes en los procesadores profesionales actuales, además de la ganancia, polaridad y delay.

Figura 3.32: Parámetros de procesamiento de la medición

Filtros de respuesta al impulso infinita (IIR):

Un filtro es un sistema que está diseñado para eliminar o modificar algún componente de la señal. RiTA incorpora los filtros IIR más usados. El filtro IIR es un filtro con respuesta al impulso infinita. La señal de salida del filtro es realimentada a través de
valores previamente computados. La ecuación que define esta clase de filtros digitales es la ecuación diferencia:

\[y[n] = \sum_{l=1}^{N} a_l y[n - l] + \sum_{k=0}^{M} b_k x[n - k] \]

(3.11)

Los coeficientes \(a_l \) son denominados coeficientes de realimentación mientras que los coeficientes \(b_k \) son denominados coeficientes de avance. El valor de \(N \) y \(M \) determina el orden del filtro (McClellan et al., 2003).

Los filtros IIR usados mayoritariamente en los procesadores son copias digitales de filtros analógicos, pero todos ellos muestran el mismo comportamiento. La distorsión de fase depende del tipo y orden del filtro. Una gran cualidad de este tipo de filtros es que no incorporan latencia, al ser de fase mínima, pero a cambio, todos ellos muestran retraso de grupo. Es decir, cada frecuencia muestra un retraso de tiempo distinto.

Figura 3.33: Banco de filtros del procesador

- filtros simples (Butterworth y Linkwitz-Riley): el parámetro Q está desactivado ya que no es necesario su uso (Figura 3.34).

Figura 3.34: Función de transferencia de filtros Linkwitz-Riley de distintos ordenes.
- Filtros complejos (Elípticos, Chebyshev I, Chebyshev II), además del orden y la frecuencia de corte, el parámetro Q determina la amplitud de la banda pasante o de rechazo (Figura 3.35).

Figura 3.35: Función de transferencia de filtros Chebyshev I de distintos ordenes y Q.

Filtro APF

Un filtro APF es un filtro IIR que permite modificar la respuesta de fase de la señal sin alterar el contenido en frecuencia. Si bien a simple vista puede parecer un filtro no útil, ya que estamos acostumbrados a usar filtros para modificar la respuesta en frecuencia, el filtro APF es la herramienta que nos permite copiar el retraso de grupo entre altavoces distintos y producir la máxima suma posible.

- 1er orden: Produce un desplazamiento de fase para la frecuencia de corte de -90°, el parámetro Q está desactivado, ya que no es necesario su uso.

- 2° orden: Produce un desplazamiento de fase para la frecuencia de corte de 180°, el parámetro Q permite modificar el ancho de banda de la respuesta de fase.
Figura 3.36: Función de transferencia de filtros APF de 2° orden y distinta Q.

Filtros de ecualización

Por lo general, los filtros de ecualización en los procesadores profesionales de audio están diseñados como un filtro IIR de segundo orden. Es por este motivo, que RiTA incorpora en esta versión únicamente filtros de ecualización de 2° orden, no obstante en versiones futuras se añadirán diseños de orden superior ya que estos proporcionan un mayor control sobre la forma de cada filtro.

- Filtro paramétrico: Los ecualizadores paramétricos son filtros digitales utilizados en audio para ajustar el contenido de frecuencia de una señal de sonido. Los ecualizadores paramétricos proporcionan capacidades más allá de los ecualizadores gráficos, permitiendo el ajuste de la ganancia, la frecuencia central y ancho de banda de cada filtro (Q). El parámetro “orden” del procesador de RiTA se convierte en la ganancia del filtro cuando se selecciona el filtro paramétrico.

Figura 3.37: Filtros paramétricos de 2° orden, con distinta Q y Gain
• Filtro Shelving: Al igual que en los filtros paramétricos un filtro Shelving puede ser diseñado para modificar la pendiente de la banda de transición. En los procesadores actuales es común que se utilice un ancho de banda fijo: Q = 1/\sqrt{2}, es por este motivo que el parámetro Q del procesador de RiTA está deshabilitado cuando se selecciona un filtro Shelving, ya que usa este factor de calidad por defecto. El parámetro “Orden” se convierte en la ganancia del filtro.

![Imagen de filtros Shelving](image)

Figura 3.378 Filtros Shelving de 2º orden, con distinto Gain y Q=1/\sqrt{2}

3.5 Comandos auxiliares

Los comandos auxiliares permiten conocer el resultado del ajuste y la interacción entre los distintos altavoces, antes de que ésta se produzca. También permite guardar la respuesta al impulso del ajuste realizado.

3.5.1 La Función Suma

La misión más importante dentro de la optimización de un sistema de sonido es localizar las posiciones donde las energías de los diferentes altavoces que forman el diseño de sonido se combinan. La combinación de las señales será una suma algebraica que dependerá del nivel relativo y la relación de fase con la que se encuentran.

Una vez hemos captado las respuestas al impulso de los diferentes altavoces en una posición de micrófono determinada, la función suma nos permite predecir que ocurre cuando las señales se combinan y, por lo tanto, a través de las modificaciones necesarias en el procesador digital procurar las correcciones y visualizar los cambios (Figura 3.38).

Al igual que en la obtención de las respuestas individuales de los altavoces, la función suma obtiene la estimación de la coherencia, para comprobar la fiabilidad de los datos y mantiene en pantalla las mediciones individuales.
Figura 3.38: Visualización de la suma de señales

Si el botón “Suma” se mantiene activado mientras se realizan cambios en el procesador, se visualizará automáticamente el resultado de la suma de los cambios realizados. Siempre que el botón “Suma” está activo, la función de transferencia muestra la estimación de la coherencia del resultado de la suma.

Para desactivar la función simplemente hay que clickar sobre el botón

3.5.2 Función Only Sum

Realiza los mismos cálculos que la función suma, pero muestra en pantalla únicamente el resultado de la suma.

Figura 3.39: Visualización de la respuesta Only Sum.
El botón Only Sum activa las funciones Save y Sound. Para salir de la función simplemente hay que pulsar cualquier botón “Plot” de las señales que estén activas.

3.5.3 Función Save

La función Save permite guardar la respuesta al impulso del ajuste realizado para posteriores usos.

3.5.4 Función Clear

La función Clear resetea el analizador, volviendo a su configuración inicial. Hay que recordar que aunque un canal de proceso esté activo con una señal, siempre se puede reutilizar el canal importando una nueva respuesta al impulso, ya que la función Clear elimina todas las mediciones del analizador.

3.5.5 Función Track

La función Track permite importar un archivo .wav, como audio de referencia para el proceso de auralización.

3.5.6 Función Sound

Si la función Only Sum está activa y el resultado de la suma está graficado por pantalla, la función Sound realiza una convolución de 30s de el archivo importado a la función Track y la respuesta de la suma. El botón Sound activa el reproductor de Audio.
3.6 Panel de Memorias

RiTA permite guardar, en esta versión, hasta 4 memorias. Cuando la función Suma o Only Sum están activas clickando el botón de alguna de las memorias se guarda el resultado de la suma.

Para activar y desactivar la visualización por pantalla simplemente hay que pulsar el botón. Para borrar alguna memoria se debe escribir clear en el espacio de texto destinado a la memoria.
4 LA FUNCIÓN IMPULSO

Cualquier sistema, por ejemplo, un altavoz o una sala, bajo la condición de que es lineal e invariante en el tiempo, queda unívocamente determinado por su respuesta al impulso $h(t)$. En la acústica arquitectónica, una gran cantidad de parámetros acústicos son determinados a partir de la respuesta impulsiva. Del mismo modo, la respuesta al impulso de un altavoz determina su comportamiento.

Durante muchos años los ingenieros acústicos se enfrentaron a la obtención de la respuesta al impulso, para ello, usaban señales de estimulo, como disparos, palmadas o explosiones de globos, con la finalidad de excitar el sistema y obtener una medición. El problema de estas técnicas es que eran poco fiables por su mala relación señal-ruido y su falta de repetitividad. La virtud de este método es que era una medición directa y no se necesitaba de ningún tipo de sistema de altavoces para generar la excitación del recinto.

La mayoría de técnicas actuales son mediciones indirectas, es decir, se obtiene la respuesta impulsiva a partir de algún tipo de medición de doble canal o manipulación de la señal.

Además de para la obtención de los parámetros acústicos de un sistema, la función de impulso es determinante en el análisis de sistemas de altavoces, ya que es la función que nos permite sincronizar las señales.

4.1 Interfaz gráfica de la función impulso

La interfaz gráfica, subdivide la pantalla en dos gráficos simétricos. Esta opción permite visualizar a la misma vez dos impulsos distintos, o un mismo impulso con distintos parámetros.
A diferencia de la función de transferencia donde todos los cambios o modificaciones que se realizan en el gráfico o en el procesador son visualizados automáticamente por pantalla, la función impulso necesita que cada vez que se realiza un cambio, este cambio sea confirmado, es decir, se debe pulsar el botón plot correspondiente.

4.2 Opciones de visualización

Independientemente de si hemos importado la respuesta al impulso de una sala usando la técnica del sweep exponencial o bien importado la respuesta al impulso de la función de transferencia de alguna señal activa en el procesador, RiTA permite diferentes entornos de visualización.

4.2.1 Visualización en modo lineal

Es posiblemente la más común. Se visualiza la amplitud en el eje de ordenadas versus el tiempo en el eje de abscisas. Si bien su respuesta no aporta demasiada información acústica, puede ser útil para visualizar la distancia entre distintas reflexiones con alto contenido en frecuencias o para detectar la polaridad de un altavoz como se muestra en las Figuras 4.2 y 4.3.

Figura 4.2: Respuesta al impulso en modo lineal de un altavoz con polaridad positiva.

Figura 4.3: Respuesta al impulso en modo lineal de un altavoz con polaridad negativa.

La visualización en modo lineal es poco sensible a la llegada de energía proveniente de reflexiones o de otros altavoces con contenido en bajas frecuencia. La visualización, por ejemplo, de la respuesta de un altavoz de baja frecuencia, es prácticamente invisible a través de este tipo de respuesta.
4.2.2 Visualización en modo logarítmico

La respuesta logarítmica no es más que aplicar 20 veces el logaritmo en base 10 al valor absoluto del impulso obtenido de manera lineal. Este tipo de visualización aporta mucha información acústica, y permite de manera cómoda ver el tiempo de propagación, la llegada de la primera energía, las reflexiones tempranas, la pendiente de decaimiento, las reflexiones discretas y el ruido de fondo, como se muestra en la Figura 4.8.

La visualización logarítmica muestra el eje de ordenadas en decibelios y el tiempo en el eje de abscisas.

![Figura 4.4:Respuesta al impulso logarítmico](image)

Tiempo de propagación: Es el tiempo que tarda el sonido en llegar al micrófono de medición, en este tiempo se incluye el tiempo de propagación acústica mas la latencia del sistema.

Sonido directo: La primera llegada y normalmente la de mayor amplitud corresponde con la llegada del sonido directo del sistema bajo medición. En el caso que estemos analizando la respuesta de un altavoz, la primera llegada suele corresponder con la energía de alta frecuencia. Como veremos más adelante, los altavoces, por diferentes motivos, no son capaces de reproducir todas las frecuencias al mismo tiempo. Las frecuencias más graves suelen llegar con una diferencia de tiempo sobre las frecuencias más agudas.

Reflexiones: Las reflexiones de orden bajo, es decir aquellas que provienen de las primeras reflexiones, suelen tener un alto contenido energético y pueden ser visualizadas claramente en la representación del impulso como una reflexión discreta.

Cola reverberante: Una vez se producen las primeras reflexiones, a éstas le siguen las reflexiones tardías que forman la cola reverberante. Debido a que la densidad temporal de las reflexiones aumenta de forma cuadrática, existe una gran concentración de reflexiones en cualquier punto de la sala (Carrión, 1998). La cola reverberante nos aporta la información subjetiva del tamaño de la sala.

Ruido de fondo: Idealmente, la cola reverberante seguiría decayendo continuamente de manera asintótica al valor de cero. Pero este fenómeno queda enmascarado por el ruido de fondo. El ruido de fondo puede ser debido a múltiples factores, como ruido del ambiente acústico o el ruido eléctrico del sistema bajo medición.
4.2.3 Visualización en modo Energy Time Curve (ETC)

La respuesta ETC también denominada envolvente de la llegada al impulso representa la magnitud de la energía sobre el tiempo pero ignorando la fase. La respuesta ETC produce un suavizado sobre la respuesta logarítmica y es una herramienta muy útil para sincronizarse sobre la llegada de bajas frecuencias.

La respuesta ETC se obtiene aplicando la transformada de Hilbert sobre el impulso lineal previamente obtenido y produce un desplazamiento de 90º de fase. +90º para las frecuencias negativas y -90 para las positivas (Kschischang, 2006).

Figura 4.5: Respuesta Logarítmica y ETC de un altavoz de baja frecuencia.

Tanto en la visualización en modo ETC o logarítmico se muestra en pantalla el T30 y el EDT de la señal bajo medición

4.2.4 Espectrograma de la función impulso

El espectrograma de la función impulso actúa del mismo modo que para la respuesta espectral, pero en este caso se analiza la respuesta al impulso obtenida de modo lineal. La respuesta nos muestra en el eje de abscisas el tiempo, en el de ordenadas la frecuencia y el cambio de color nos muestra la diferencia de energía.

Para calcular el espectrograma se itera sobre la respuesta al impulso aplicando la STFT y obteniendo la respuesta para cada trozo de la señal enventanada. Como siempre, la decisión del tamaño de ventana afectará a la resolución de los datos. Tamaños pequeños nos permiten obtener una buena visualización de lo que ocurre a través del tiempo, por ejemplo, la llegada de una reflexión de alto contenido energético ya que su constante de tiempo es pequeña, pero una mala visualización de las frecuencias que la conforman, ya
que su frecuencia de resolución es grande. Si usamos un tamaño de ventana grande, no podremos tener detalle de lo que ocurre a través del tiempo.

La Figura 4.6 nos muestra la visualización de una misma respuesta al impulso con dos tamaños distintos de ventana. Claramente el gráfico superior nos permite visualizar el tiempo en el cual se producen las reflexiones, por el contrario el gráfico inferior con un tamaño mayor nos permite visualizar el contenido en frecuencia de la respuesta y el filtro de peine que se produce, pero a cambio de perder todos los datos temporales.

Figura 4.6: Respuesta de espectrograma. a) ventana Hann 128 muestras, tamaño de FFT: 2048, solapado: 90%; b) ventana Hann 4096 muestras, tamaño de FFT: 8192, solapado: 90%.

La función espectrograma es útil para mediciones acústicas así como para mediciones electro-acústicas, ya que permite visualizar resonancias o vibraciones producidas por el sistema de sonido.

4.2.5 Filtrado pasa-banda

En las mediciones acústicas no estamos interesados solamente en estudiar el rango completo de la respuesta al impulso. Muchos de los parámetros acústicos se muestran en fracciones de octava o de tercio de octava. Para ello, parte de la respuesta al impulso debe ser filtrada con algún tipo de filtro de fase lineal no invasivo.

El botón Broadband permite visualizar las respuesta al impulso en modo lineal, log, ETC y espectrograma en fracciones de octava.
4.3 Indicadores acústicos

Una gran cantidad de parámetros acústicos pueden ser obtenidos a partir de la manipulación de los datos obtenidos a través de la respuesta al impulso. Por lo tanto, la respuesta al impulso se convierte en la herramienta básica.

El cálculo de la RT60, es decir, el tiempo necesario para que el sonido en una sala decaiga 60 dB una vez este ha sido apagado es el principal parámetro de una medición acústica, ya que permite reducir mucha información a un valor comprensible. Pero dos salas con el mismo tiempo de reverberación pueden tener características acústicas totalmente distintas. Para la correcta especificación de una sala necesitamos de la obtención de otros indicadores.

4.3.1 Integral de Schroeder

Durante mucho tiempo el tiempo de reverberación de una sala fue obtenido excitando con algún tipo de sonido impulsivo el recinto y obteniendo una medición del mismo. Pero la precisión para determinar el tiempo de reverberación a partir de la curva de decaimiento se veía limitado por las fluctuaciones aleatorias de la propia curva.

M.R. Schroeder\(^4\) demostró que la curva de decaimiento puede ser encontrada con mayor precisión con una integración inversa de la respuesta al impulso (Schroeder, 1965).

\[
R(t) = \int_t^\infty h^2(t)dt = \int_0^\infty h^2(t)dt - \int_0^t h^2(t)dt
\] \(4.1\)

La integral cumulativa de la respuesta al impulso al cuadrado proporciona la curva de decaimiento equivalente al promedio de infinitos decaimientos de ruido blanco estacionarios.

Los cálculos de la EDT o del tiempo de reverberación se realizan a partir de una regresión lineal respecto de la integral de Schroeder (Figura 4.8)

\(^4\) Manfred Robert Schroeder (1926-2009). Físico alemán
4.3.2 Tiempo de reverberación

Como hemos comentado anteriormente, el tiempo de reverberación desarrollado por W.C Sabine\(^5\) se define como el tiempo necesario para que un sonido estacionario en una sala decaiga 60 dB una vez éste ha finalizado. En la práctica, el ruido de fondo normalmente imposibilita poder medir un decaimiento por debajo de este umbral, por lo que es común limitar el rango de decaimiento a un intervalo menor e interpolar para encontrar el resultado final. Los rangos más usuales son el RT20 que mide el tiempo necesario para que a partir del momento en que la energía a caído 5dB respecto de la llegada inicial ésta se ha atenuado 25 dB y el RT30, exactamente lo mismo pero encontrando el valor donde la energía a decaído -35dB.

Las ecuaciones que los definen son las siguientes:

\[T_{20} = 3 (t_{-25} - t_{-5}) ; T_{30} = 2 (t_{-35} - t_{-5}) \]

El tiempo de decaimiento puede ser expresado también en fracciones de octava o tercio de octava, ya que esto permite poder estudiar de manera independiente cada rango de frecuencias (Figura 4.9)

\(^5\) Wallace Clement Sabine (1868-1919). Físico norteamericano.
4.3.3 Early Decay Time (EDT)

El EDT es una medición alternativa del tiempo de reverberación y permite relacionar de mejor manera la percepción subjetiva. Dos salas con el mismo tiempo de reverberación pero con EDT diferentes son percibidas de distinta forma. La sala con menor EDT tendrá una percepción de un tiempo de reverberación menor.

El cálculo se realiza sobre la integral de Schroeder localizando el tiempo donde la curva de decaimiento a disminuido 10 dB respecto de la llegada original, su ecuación es la siguiente:

$$EDT = 6(t_{-10})$$

Es decir, se multiplica por 6 veces el tiempo encontrado para que exista una disminución de 10 decibelios.

4.3.4 Claridad

La claridad define la capacidad de percibir los detalles sin que estos se vean enmascarados por la reverberación. La claridad se calcula como la relación entre la energía temprana y la energía tardía (Figura 4.10).

Cuando las reflexiones tienen un retraso no mayor que 50-80 ms sobre la llegada del sonido directo, el oído integra estas contribuciones conjuntamente con el sonido original y se percibe como un único sonido que ha sido amplificado respecto de la energía reverberante (D. Thomas, 2007).

Es habitual expresar los valores de claridad respecto a dos valores de tiempo distintos. 50ms relaciona la inteligibilidad de la palabra, mientras 80ms relaciona la inteligibilidad de la música.

$$C_{50} = 10log_{10}\left[\int_{0}^{50} h^2(t)dt / \int_{50}^{\infty} h^2(t)dt\right]$$

$$C_{80} = 10log_{10}\left[\int_{0}^{80} h^2(t)dt / \int_{80}^{\infty} h^2(t)dt\right]$$

![Diagrama de claridad](image_url)
Figura 4.10: Relación entre la energía temprana y tardía en la respuesta al impulso.

Del mismo modo que para el tiempo de reverberación, la claridad puede ser descompuesta en octavas o tercios de octava (Figura 4.11)

Figura 4.11: Descomposición de la claridad en tercios de octava.

4.3.5 Timbre

El timbre describe la influencia de la sala en el equilibrio entre las frecuencias medias altas y la baja frecuencia. Habitualmente, se utiliza para el cálculo fracciones de octava o tercio de octava.

Bass Ratio (BR): Relaciona la riqueza de las frecuencias graves y mide la calidez de la música en la sala:

\[BR = \frac{t_{125\text{Hz}} + t_{250\text{Hz}}}{t_{500\text{Hz}} + t_{1\text{kHz}}} \] \hspace{1cm} (4.6)

Treble Ratio (TR): También denominado brillo. Relaciona la claridad y la riqueza en la reproducción de armónicos:

\[TR = \frac{t_{2\text{kHz}} + t_{4\text{kHz}}}{t_{500\text{Hz}} + t_{1\text{kHz}}} \] \hspace{1cm} (4.7)

Initial Time Delay Gap ITDG: Es el intervalo existente entre la llegada del sonido directo y la primera reflexión significativa. Este indicador relaciona la percepción subjetiva de la intimidad de la sala. Leo Beranek sugiere que si el tamaño es mayor a 45 ms la sala no tiene intimidad (L. Beranek, 1962). (Figura 4.12)

Figura 4.12: Calculo de la ITDG a partir de la transformada de Hilbert.
RT_{mid}: Es la media aritmética entre los tiempos de reverberación obtenidos para 500 y 1kHz. Es habitual encontrarse tablas con valores recomendados de RT_{mid} en función del tipo de sala.

<table>
<thead>
<tr>
<th>Tipo de sala</th>
<th>RT<sub>mid</sub> Sala ocupada (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locutorio de radio</td>
<td>0.2 – 0.4</td>
</tr>
<tr>
<td>Sala de conferencias</td>
<td>0.7 – 1.0</td>
</tr>
<tr>
<td>Cine</td>
<td>1.2 – 1.5</td>
</tr>
<tr>
<td>Teatro de opera</td>
<td>1.2 – 1.5</td>
</tr>
<tr>
<td>Sala de conciertos (música de cámara)</td>
<td>1.3 – 1.7</td>
</tr>
<tr>
<td>Sala de conciertos (música sinfónica)</td>
<td>1.8 – 2.0</td>
</tr>
</tbody>
</table>

Tabla 4.1: Valores de referencia para distintos tipos de sala.

Cuando la visualización ITDG se muestra por pantalla, se debe elegir entre alguna de las reflexiones (Asteriscos negros) y pulsar Enter, sino el programa se queda en espera.

4.4 Importación de Impulsos

La función impulso en el analizador RiTA está pensada para trabajar de dos maneras completamente distintas:

Respuesta al impulso de los altavoces:

Esta función permite, a través de la transformada inversa, obtener la respuesta al impulso de las señales que estén activas en el procesador. Si bien este tipo de respuesta está pensada para ver los cambios que producen en la respuesta al impulso al manipular la señal a través de los parámetros del procesador, también permite ver cuanta información está siendo degradada por la sala. La longitud de tiempo depende del tamaño de FFT elegido en la función de transferencia.

Figura 4.13: Importación de la respuesta al impulso de una señal activa en el procesador

Respuesta al impulso de la sala:

Esta función está preparada para importar respuestas al impulso de un recinto acústico. En ningún momento la respuesta se ve modificada por algún tipo de truncamiento o aplicación de la transformada de Fourier. Se obtiene la respuesta al impulso completa y se adquieren los indicadores acústicos. Hay que tener en cuenta que cuanto más largo es el tamaño del impulso, más tiempo necesita el analizador para extraer los datos.
Figura 4.14: Importación de la respuesta al impulso de una sala.

4.5 Parámetros del Espectrograma

Los parámetros a tener en cuenta en la visualización de la función de espectrograma son el tamaño de ventana de FFT y el porcentaje de solapado. El tamaño de FFT siempre debe ser igual o mayor que el tamaño de ventana.

Cuando el tamaño de FFT es mayor que el de ventana, RiTA usa zero-padding y se obtiene una visualización más suavizada.

El grado de porcentaje de solapado tiene efecto en cómo se muestran los datos. Si no se aplica ningún tipo de solapado, el gráfico muestra cada rebanada de tiempo igual al tamaño de la constante de tiempo de la ventana. Contrariamente, un alto grado de solapamiento permite visualizar con más detalle la respuesta (Figura 4.15).

Figura 4.15: Respuesta de espectrograma. a) 0% de solapado; b) 90% de solapado.
Cuando la función Spectrograma está activa, aparece un deslizador en la parte izquierda del gráfico. Este deslizador permite modificar el umbral de la magnitud a partir de la cual se quieren visualizar los datos.

Figura 4.15: Deslizador de magnitud de la función espectrograma
Bibliografía

